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A Monte Carlo simulation was performed for loop-erased self-avoiding walks 
(LESAW) to ascertain the exponent v for the Z 2 and Z 3 lattices. The estimated 
values were 2v = 1.600 +_ 0.006 in two dimensions and 2v = 1.232 +_ 0.008 in three 
dimensions, leading to the conjecture v = 4/5 for the two-dimensional LESAW. 
These results add to existing evidence that the loop-erased self-avoiding walks 
are not in the same universality class as self-avoiding walks. 
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1. I N T R O D U C T I O N  

The p r o b l e m  of self-avoiding walks ( S A W )  on latt ices has been the subject  
of intense analy t ica l  and  numer ica l  s tudy over  many  decades.  Despi te  this, 
there remains  a pauc i ty  of r igorous  results for the nont r iv ia l  case of  d imen-  
s ional i ty  greater  than  1. Hammers l ey  (1) has p roved  the existence of a finite, 
nonzero  connect ive cons tan t  # for the general  d -d imens iona l  hypercubic  
lattice,  and  Hammers l ey  and Welsh/2) have p roved  tha t  if cn(d) denotes  the 
n u m b e r  of n-step d-d imens iona l  SAW's  then c , ( d ) ~ l ~ ( d ) n e x p [ O ( x / ' n ) ] .  
F o r  d =  2, 3 the existence of  a cri t ical  exponen t  has not  even been p roved  
{this would  co r r e spond  to a sharpen ing  of  the term O ( x f n  ) above  to 
O [ l o g ( n ) ] } .  The existence of a cri t ical  exponent  has been proved  for d 
sufficiently large, and  much  progress  has been m a d e  for the case d > 4  
by Brydges and  Spencer  (3) and  by Slade, (4 6) as discussed below. 

A seminal  mode l  was p r o p o s e d  by  D o m b  and Joyce, (7) which featured 
a var iable  in te rac t ion  in which self-intersections were energet ical ly 
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unfavorable. The effect of increasing this interaction was then studied. 
More precisely, the random walk (RW) with repulsive interaction w6 o 
between sites i and j was considered, where 6 is the Kronecker 6-function. 
Each pair of sites in every random walk configuration of N steps is 
weighted by the factor (1 + w6u), the weight for the walk being the product 
of these weights. Then w = 0  corresponds to a pure random walk, and 
w = - 1  to a SAW. As w is varied between 0 -  and - 1, the walk is believed 
to be in the SAW universality class, changing discontinuously to the RW 
universality class at w = 0. This model has greatly aided our understanding 
of SAWS, and underlies a number of rigorous calculations, including those 
of Brydges and Spencer cited above. 

For  "ordinary" SAWS, if ( R  2) denotes the mean square end-to-end 
distance, then we can write ( R ~ ) ~ n  2v, where 2 v = 2  for d = l ,  and 
Nienhuis (8,9~ has shown nonrigorously but apparently exactly that 2v = 3/2 
for d =  2, in agreement with the earlier heuristic result of Flory (1~ that 
2v=6/(d+2) for 1~<d~<4, with 2 v = l  for d > 4 .  Remarkably, Flory's 
result appears to be correct for all dimensionality save d = 3, where the best 
series, (11,~2~ renormalization group, (13) and Monte Carlo work (141 yields 
2v=1.180_0.008 ,  which is less than 2% below the Flory prediction. 
Renormalization group theory predicts (R~)~n(logn) 1/4 (despite a 
number of erroneous statments in the literature to the effect that this 
exponent is 3/8), whereas for d > 4  there is no logarithmic confluence 
(though for odd dimensionality there are nonanalytic correction-to-scaling 
terms(15)). 

Various schemes to study the saw problem have been tried. Fisher and 
Sykes (~6~ considered approaching the SAW limit systematically by starting 
with the random walk problem and forbidding r-gons, and then consider- 
ing the effect of increasing r. In that approach, the connective constant 
approaches the SAW limit # monotonically with r, but the critical expo- 
nent remains unchanged, changing discontinuously only in the limit as 
r--* oo. This reflects the abrupt change from a Markovian to a non- 
Markovian process. In another study, Klein (17) considered the connective 
constant of SAWS in a ( d -  1)-dimensional "strip" of width D. One finds, 
however, that the critical exponent is that of a ( d -  1)-dimensional SAW, 
with the connective constant monotonically approaching /~(d) as D 
increases. Again, the appropriate d-dimensional critical exponent is 
obtained only in the limit of infinite width, D ~ oo. 

For  the D o m b ~ o y c e  model, Brydges and Spencer (3) showed that 
v = 1/2 for dimensionality d >  4 and for w sufficiently small. They also 
prove that the endpoint distribution is Gaussian in that case. Slade (4) has 
proved that v = 1/2 for the "true" SAW in sufficiently large dimension (that 
is, the SAW defined without recourse to the Domb-Joyce model). He has 
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also proved (5'6) that under the same conditions, 7 = 1 and the scaling limit 
of the SAW is Brownian motion. 

The SAW (defined in Section 2) has associated with it a particular 
measure. A different model, the loop-erased SAW (LESAW) was intro- 
duced by Lawler. (is) This model (also defined below) has an entirely dif- 
ferent associated measure. Informally, it can be most easily appreciated as 
the erasing of loops in ordinary random walks. If one takes an arbitrary, 
infinite-length random walk on a lattice and erases all loops (including 
immediate reversals), one clearly recovers a SAW. As (an infinite number 
of) different random walks can clearly produce the same SAW, the measure 
of such loop-erased self-avoiding walks is likely to be different. Additional 
care is required in two dimensions, where it is known that random walks 
are infinitely recurrent (but with an infinite recurrence time). 

The LESAW is also of interest because of its connection with the 
Laplacian walk (19'2~ and because of the rigorous results obtained by 
Lawler (2n for the critical properties of the LESAW on d>~4 hypercubic 
lattices. If it were found that the LESAW and the SAW lay in the same 
universality class, then these rigorous results would apply to the SAW. In 
this paper a Monte Carlo simulation is performed to determine the critical 
exponent v for the LESAW on the square and simple cubic lattices. The 
value of v for the SAW is 3/4 in 2d and 0.592-+-0.003 (11'12'14) by Monte 
Carlo and series work, and 0.588_+0.002 (13) by renormalization group 
calculations in 3d. 

The loop-erasing algorithm is defined in Section 2, together with the 
critical exponent v. In Section 3 the Monte Carlo simulation is described 
together with the results of this experiment. 

2. D E F I N I T I O N S  

Let N denote the positive integers and zero. Let Z P denote the hyper- 
cubic integer lattice in p dimensions and let d denote the Euclidean metric 
on Z p. The set of n-step random walks on Z p for n e N is defined as 

Rn={t:{O,.,.,n}~ZP:t(O)=O&d(t(i+l),t(i))=l} (1) 

The set of n-step self-avoiding walks on Z p is defined as 

Sn= { t e R , :  t(i)=t(j)=~i=j} (2) 

Let S = U.~N Sn be the set of all saws on Z p. 
In obtaining an N,(t)-step SAW Pn(t) from an n-step random walk t, 

the loop-erasing algorithm (N,, P , )  is applied and is inductively defined as 
follows: (N. : Rn --* N, P,, : R~ -~ S). Let t e R, and let to = t and n o = n. Sup- 
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pose nk e N and t k e R~k has been defined for some k/> 0. If t k ~ S, then we 
are done. Define P~(t)= tk and N , ( t ) =  nk. Then P,( t )E S,~. Otherwise, let 

m = m i n { i e  {0 ..... nk}: ~jE {0,..., nk}: tk(i)= t~(j) & i # j }  

and 

l = m i n { j E  {0 ..... nk}\{m}: t ( j ) =  t(m)} 

Let nk+l = n k - l + m  and define tk+ 1 " {0 ..... nk+l} ~ Z  p as follows: 

tk+ a(i)= tk(i), i = 0,..., m 
(3) 

= t k ( i + l - m ) ,  i = m +  l,...,nk+ 1 

The induction must terminate after no more than n/2 steps for n even or 
( n -  1)/2 steps for n odd. Define the average number of steps remaining 
after loop erasure for n-step random walks as follows: 

( N . ) = ( 2 p )  " ~ N~(t) 
t ~  Rn 

as there are (2p) ~ n-step random walks on Z p. 
Note that (N~)<~n as N~(t)<~n. Let 

2v n = l o g  n/ log(N~)  >~ 1, Vn > 1 (4) 

Define the critical exponent VLESAW for the LESAW as lim sup v,. Then 
(Nn) ~ n  1/2vLEsaw as n--* oo given that lim v~ exists. The critical exponent v 
for the SAW is defined as follows: The end-to-end squared distance of an 
n-step random walk t is defined as r ] ( t ) =  [d(t(n), t(0))] 2. The average 
end-to-end squared distance of n-step SAWS is defined as 

(r2)s=c~l 2 r2(t) 
t ~  S n 

where cn is the number of n-step SAWS on Z p. Now let 2Fn= 
l o g ( r ] ) s / l o g  n Vn > 1. Then Fn < 1 Vn > 1 by comparison with linear chains. 
Define the critical exponent VSAW for the SAW as lira sup Fn. Then 

( r ] ) s ~ n  2~saw as n-- ,oo (5) 

given that lim gn exists. If 

(r]),=(Zp)-" y~ r~.~,~(P.(t)). ( r ] ) r = ( Z p l  " Y~ r2oft) 
t e r n  t e r  n 
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we then have the result that ( r 2 > l =  <r2n}r ~ n as n ~ oo by the well-known 
random walk result, and the fact that r2Nn(~)(P,(t))=r2(t). Hence a 
qualitative correspondence between VSA w and VLESA w may be seen, given 
that lira v n exists. Now (N,> ~ n  l/2vsAw a s  n --~ oO and thus <N,)2~sAw ~ n as 
n--, oo and hence <r2>t~ <N,> 2vsAw as n ~ 0% which is to be compared 
with (5). 

There are other possible definitions of the critical exponent for 
LESAWS. Lawler (22) takes infinite LESAWS and considers the mean 
square distance from the nth point to the origin, <r]>, and defines the 
exponent 2v by 2v= l im  sup ln(r])/lnn. The infinite LESAW is in turn 
given by two equivalent definitions for d~> 3. In the first definition, the 
loop-erasing algorithm is applied to an infinite random walk to yield an 
infinite LESAW. In the second definition, Lawler defines the LESAW by 
the transition probabilities at each step. 

The second definition is modified to provide a definition of infinite 
two-dimensional LESAWS. This definition is not particularly practical as a 
constructive algorithm. An alternative definition of the LESAW and its 
exponents is required that does not depend on dimensionality. Such a con- 
struction is given by Lyklema and Evertsz, who define the LESAW by 
generating random walks starting at the origin and ending at the surface of 
a p-dimensional hypersphere, of radius M, centered at the origin. The loop- 
erasing algorithm is then applied, resulting in a LESAW of at least M 
steps. For n<~M a measure P~.M is generated on the n-step SAWS. 
Lawler (22) proved that Pn, n3(W)= P~(w)[1 + O(1/x/-n)], where P~(w)is the 
measure generated by Lawler's less practical definition, and the sub- 
dominant term is uniform over all SAWS w. 

3. E X P E R I M E N T  A N D  R E S U L T S  

A Monte Carlo simulation was performed to monitor the behavior of 
( N , >  in what was hoped to be the asymptotic region and to thus to 
numerically determine the existence of VLESAW and its value on the square 
and simple cubic lattices. 

A total of 170,000 random walks, each of 204,800 steps in both two 
and three dimensions, were generated using a Fortran program which was 
essentially a linear congruential random number generator with an 
approximate cycle time of 101~. Loops were erased from the random walks 
as they occurred. That  is, the program noted whether each new point on 
the walk had been visited before, and if so, erased the loop, constantly 
keeping track of the number o f  self-avoiding steps. This is equivalent to 
performing the loop-erasing algorithm defined in Section2 after the 
random walks have been generated. N,(t) was recorded after n random 
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steps for, n = 400, 800, 1600,..., 204, 800 for each random walk t. This is 
equivalent to individually generating random walks t of n = 400, 800, 
1600 .... steps and noting Nn(t ) individually, under the assumption that the 
random number generator is adequate. 

The results so obtained are tabulated in Table I. A plot of log<Nn> 
verus logn  strongly supported a linear relationship between these two 
quantities in the asymptotic region. A linear regression was performed to 
fit <N,> to Fl 1/2v for n large. The results are tabulated in Table II, along 
with the results for SAWS cited above. For  2d LESAWS, we find 
v = 0.800 +_ 0.003, while for 3d LESAWS we find v = 0.616 +_ 0.004. Both 
results are different from the corresponding SAW exponents. 

Other experiments performed gave less precise estimates of the 
exponents. In one experiment m-step random walks, with m = 400, 800, 
1600,..., 204800 steps, were generated and loops erased to yield N,,(t)-step 
LESAWS P,,(t). The squared distance from the origin to the nth point was 
recorded for all walks for which Nm(t ) ) n  and the percentage of such 

Table I. Results of Monte  Carlo Simulations on LESAW 
of 204,800 Steps 

n <N~> s.d. 

Square lattice 
400 52.2 27.8 
800 81.0 41.8 

1,600 125.4 63.0 
3,200 194.2 95.3 
6,400 299.8 146.5 

12,800 461.7 225.9 
25,600 710.7 348.6 
51,200 1,095.4 535.1 

102,400 1,690.1 825.9 
204,800 2,606.6 1,277.5 

Simple cubic lattice 
400 125.8 45.3 
800 220.5 76.8 

1,600 386.4 131.2 
3,200 677.6 224.6 
6,400 1,186.3 391.7 

12,800 2,078.7 683.1 
25,600 3,641.4 1,194.8 
51,200 6,405.3 2,088.8 

102,400 11,242.0 3,652.2 
204,800 19,720.8 6,418.3 
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Tablel l .  Summary of Results Obtained by Monte Carlo Simulations of 
LESAWS and Exact ( d = 2 )  and Numerical ( d = 3 )  Results for SAWS 

Lattice 2VLESA w 2VsA w 

Square 1.600 _+ 0.006 1.5000 
Cubic 1.232 4- 0.008 1.180 _+ 0.008 

walks was noted. The mean square distance (r2)m w a s  studied for values 
of n for which the percentage of LESAWS with Nm(t)>~n was ~>99.98% 
and ~> 97.77 % for dimensionality 3 and 2, respectively, and estimates of the 
critical exponent 2vm=l im,~  ~ ln(rZ),n/lnn obtained. These values of v,,, 
were extrapolated to estimate the exponent that would be obtained by 
taking infinite LESAWS. We also calculated the mean radius of gyration 
(s2) ,  and hence we were able to estimate the universal amplitude ratio 
(r2~)/(s2). The results are given in Table III. From this table we estimate 
that the universal ratio 2 2 (rn)/(sn) is 8.30+0.02 ( d = 2 )  and 6.74+0.02 
( d =  3). For  "ordinary" saws, the corresponding values are (23) 7.14_+0.05 
(d =  2) and 6.45 + 0.05 (d=  3). This provides additional evidence that loop- 
erased SAWS are in a different universality class. 

Next, random walks were generated, and loops erased as they 
occurred, until the number of self-avoiding steps (after loop erasure) 

Table III. Estimates of Mean Square End-to-End Distances ( R .  2) 
and Mean Square Radius of Gyration (S~)  for 

Two-  and Three-Dimensional Hypercubic Lattices a 

Three Dimensions Two dimensions 

2 2.420 0.491 4.93 2.729 0.525 5.20 
5 7.682 1.294 5.94 10.835 1.622 6.68 

10 18.388 2.878 6.39 31.68 4.255 7.45 
20 43.965 6.641 6.62 94.1 11.93 7.89 
50 138.25 20.530 6.73 403.6 49.24 8.20 

100 327.37 48.495 6.75 1217 147.0 8.28 
200 774.1 114.76 6.76 3680 444 8.29 
300 1279 189.8 6.74 7020 846 8.30 
400 1828 271.3 6.74 11200 1350 8.3 
500 2410 357.7 6.74 

The entries are believed accurate to at least three significant figures. 
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reached a preset value n. The mean end-to-end distances ( r ] )  of these 
n-step SAWS was recorded and an estimate of the critical exponent 
defined by l i m n ~  log(r~)/logn was obtained. This procedure roughly 
corresponds to the measure defined by Lyklema and Evertsz. While not 
performed on long SAWS, preliminary results yielded v = 0.75 ___ 0.1 in 2D. 
Given the relative inaccuracy of this method, we did not pursue it. 

4. CONCLUSION 

Recently Lawler (22) proved that the above exponent VLESAW>~ Vv~ory. 
Accepting the numerical results for d=  3, it immediately follows that the 
SAW and LESAW models are in different universality clases, as also 
evidenced by our results above. The rigorous results obtained by Lawler 
for the LESAW on the four- and higher-dimensional hypercubic lattices do 
not necessarily apply to the SAW on these lattices. 

Given the propensity for two-dimensional lattice models to produce 
rational critical exponents and the result obtained above, a conjectured 
result for VLESAW might be 4/5. Similar results are reported for the two- 
dimensional case by Lyklema and Evertsz, for their equivalent (19) 
Laplacian random walk with parameter q = 1. 
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